Search for the Higgs boson in the WW decay channel with the ATLAS Detector

Heather M. Gray
on behalf of the
ATLAS Collaboration

Presented on 1 September 2011 at SUSY 2011 Fermilab, Chicago

Introduction

- LHC searches are rapidly closing in on the SM Higgs boson
 - With 1-2 fb⁻¹ of data, ATLAS has sensitivity for 140 < m_H < 410 GeV
- The H→WW is particularly sensitive in the intermediate mass range
 - H→WW*→IvIv (ee, μμ and eμ) see ATLAS-CONF-2011-134
 - H→WW→Ivjj (e and μ) see ATLAS-CONF-2011-052
- Focus on IvIv with an expected exclusion of 135-196 GeV (95% CL)

with L=1.7 fb⁻¹

The ATLAS Detector

The H→WW→IvIv Analysis

The H→WW→IvIv Analysis

- The H→WW^(*)→IvIv channel combines the large H→WW branching ratio with a clean final state
 - Analysis performed for 110
 < m_H < 300 GeV
- Recently updated to 1.7 fb⁻¹
- Using high performance btagging algorithm
- Cuts re-optimised in high mass region: m_H > 220 GeV

Lepton Selection

- Select events containing exactly two opposite sign leptons (e or μ)
- Cut on dilepton invariant mass to reduce Drell-Yan background
 - ee, $\mu\mu$: $m_{II} > 15$ GeV, $|m_{II}$ $m_{Z}| > 15$ GeV
 - eμ: m_{II} > 10 GeV
- Note: systematic error bands include normalisation but not shape uncertainty

Require large missing energy

- Require missing energy to suppress QCD and Drell-Yan backgrounds
- Use E^{miss}_{T,rel} instead of E_{T,miss}

$$E_{\mathrm{T,rel}}^{\mathrm{miss}} = \left\{ \begin{array}{ll} E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta\phi \geq \pi/2 \\ E_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin \Delta\phi & \text{if } \Delta\phi < \pi/2 \end{array} \right.$$

$$\Delta \phi = \min(\Delta \phi(E_T^{\text{miss}}, \ell), \Delta \phi(E_T^{\text{miss}}, j))$$

- Same flavour: E_{T,rel} > 40 GeV
- Opposite flavour: E^{miss}_{T,rel} > 25 GeV

	WW	Z/γ^* + jets	tt	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
$m_{\ell\ell} > 15 \text{ GeV},$ $m_{eu} > 10 \text{ GeV}$	1380 ± 100	970000 ± 70000	6200 ± 600	630 ± 70	1200 ± 100	970000 ± 70000	997813
$ m_Z - m_{\ell\ell} > 15 \text{ GeV}$	1220 ± 80 660 ± 50	91000 ± 7000 300 ± 200	5500 ± 600 2700 ± 300	560 ± 60 310 ± 40	92 ± 9 28 ± 4	98000 ± 7000 4000 ± 500	104253 4051
$E_{ m T,rel}^{ m miss}$	000 ± 30	300 ± 200	2100 ± 300	310 ± 40	20 ± 4	4000 ± 300	4031

Jet Multiplicity

- Further categorise events by jet multiplicity for jets with $p_T > 25$ GeV, $|\eta|$ < 4.5
 - 0j: Zero jets
 - 1j: Exactly 1 jet, no b-tag
- Different signal sensitivity and background composition
- Cuts for 0j: Cuts: $p_T^{\parallel} > 30 \text{ GeV}$
- Cuts for 1j:
 - no tagged b-jets
 - p_T^{tot} < 30 GeV
 - $|m_{\tau\tau} m_Z| < 25 \text{ GeV}$

$$\mathbf{p}_T^{tot} = \mathbf{p}_T^{l1} + \mathbf{p}_T^{l2} + \mathbf{p}_T^{j} + \mathbf{p}_T^{miss}$$

Topological Selection

- Irreducible WW background: topological cuts to exploit Higgs mass and spin
- Values optimised in 3 Higgs mass ranges
- Dilepton Invariant Mass, m_{II}
 - m_{II} < 50 GeV (m_H < 170 GeV)
 - m_{II} < 65 GeV (170 <= m_{H} < 220 GeV)
 - $50 < m_{II} < 180 \text{ GeV } (m_H >= 220 \text{ GeV})$
- Opening angle between leptons, Δφ
 - $\Delta \phi < 1.3 \ (m_H < 170 \ GeV)$
 - $\Delta \phi$ < 1.8 (170 <= m_H < 220 GeV)
- Sliding cut on transverse mass, m_T
 - \bullet 0.75 m_H < m_T < m_H (m_H < 220 GeV)
 - \bullet 0.6 m_H < m_T < m_H (m_H >= 220 GeV)

$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{p}_{\rm T}^{\rm miss})^2}$$

Backgrounds

*0j: estimate top background from b-jet survival probability

$H \rightarrow WW \rightarrow IVIV + Oj$

e.g. $m_{H} = 150 \text{ GeV}$

	Signal	WW	W + jets	Z/γ^* + jets	$t\bar{t}$	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
Jet Veto	82 ± 17	430 ± 40	70 ± 40	160 ± 150	37 ± 13	28 ± 7	11 ± 3	740 ± 160	738
$ \mathbf{P}_{\mathrm{T}}^{\ell\ell} > 30 \text{ GeV}$	79 ± 17	390 ± 40	60 ± 30	28 ± 11	35 ± 12	25 ± 7	10 ± 3	540 ± 80	574
$m_{\ell\ell} < 50 \text{ GeV}$	56 ± 12	98 ± 13	17 ± 7	12 ± 7	6 ± 3	4.8 ± 1.5	1.2 ± 0.4	139 ± 20	175
$\Delta \phi_{\ell\ell} < 1.3$	48 ± 11	76 ± 10	9 ± 4	8 ± 6	5 ± 2	4.8 ± 1.5	1.1 ± 0.3	105 ± 16	131
$0.75 m_H < m_{ m T} < m_H$	34 ± 7	43 ± 6	5 ± 2	2 ± 4	2.2 ± 1.4	1.2 ± 0.8	0.7 ± 0.3	53 ± 9	70
ee	5.2 ± 1.2	6.2 ± 0.9	0.9 ± 0.4	0.8 ± 1.4	0.3 ± 0.3	0 ± 0.3	0.07 ± 0.05	8.2 ± 1.7	9
$e\mu$	17 ± 4	22 ± 3	2.8 ± 1.3	0 ± 1.3	1.1 ± 0.5	0.8 ± 0.6	0.31 ± 0.19	27 ± 4	32
$\mu\mu$	11 ± 2	14 ± 2	1.0 ± 0.6	1 ± 3	0.8 ± 1.1	0.4 ± 0.4	0.31 ± 0.09	18 ± 5	29

H→WW→IνIν + 0j Limits

- Exclude a range of Higgs masses with the 0j channel alone
- Kink due to cut change at m_H = 220 GeV

$H \rightarrow WW \rightarrow |v|v + 1j$

e.g. $m_{H} = 150 \text{ GeV}$

	Signal	WW	W + jets	Z/γ^* + jets	$t\overline{t}$	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
1 jet	41 ± 7	158 ± 16	31 ± 19	60 ± 60	390 ± 100	140 ± 20	10.7 ± 1.4	800 ± 120	756
<i>b</i> -jet veto	40 ± 7	154 ± 16	29 ± 18	60 ± 50	140 ± 40	54 ± 9	10.6 ± 1.4	450 ± 70	440
$P_{\rm T}^{\rm tot} < 30~{\rm GeV}$	32 ± 6	127 ± 13	16 ± 9	30 ± 30	90 ± 20	41 ± 7	7.0 ± 0.9	310 ± 50	312
$Z \rightarrow \tau \tau$ veto	32 ± 6	124 ± 14	14 ± 7	30 ± 20	84 ± 19	39 ± 7	6.8 ± 1.4	300 ± 30	301
$m_{\ell\ell} < 50 \mathrm{GeV}$	22 ± 5	27 ± 5	2.1 ± 1.0	8 ± 6	17 ± 6	9 ± 2	1.5 ± 0.4	64 ± 10	69
$\Delta \phi_{\ell\ell} < 1.3$	19 ± 4	21 ± 4	1.8 ± 0.9	4 ± 5	14 ± 5	8 ± 2	1.2 ± 0.3	50 ± 9	54
$0.75 m_H < m_{ m T} < m_H$	12 ± 3	10 ± 2	0.8 ± 0.4	1.1 ± 1.8	6.9 ± 1.9	3.4 ± 1.4	0.6 ± 0.3	23 ± 4	23
ee	1.7 ± 0.4	1.4 ± 0.4	0.12 ± 0.06	0.07 ± 0.12	0.6 ± 0.3	0.5 ± 0.3	0.10 ± 0.09	2.8 ± 0.7	5
$e\mu$	6.3 ± 1.5	5.7 ± 1.3	0.5 ± 0.3	0.6 ± 1.0	3.7 ± 1.3	2.0 ± 1.0	0.39 ± 0.20	13 ± 3	11
μμ	3.9 ± 0.9	3.3 ± 0.7	0.1 ± 0.2	0.5 ± 0.5	2.6 ± 1.5	1.0 ± 0.9	0.08 ± 0.06	8 ± 2	7

$H \rightarrow WW \rightarrow IVIV + 1j$ Limit

- Lower sensitivity than 0j but very close the SM cross-section at m_H = 160 GeV
- Good agreement between the observed and expected limits at low Higgs mass

H→WW→IVIV Exclusion Limit

- A SM Higgs boson with 154 < m_H < 186 GeV is excluded at 95% CL by combining 0j and 1j
 - Expected exclusion range is 135 < m_H < 196 GeV
 - Observed limit is within 2σ of the expected limit over the full range

Significance and p-values

- Compare expected significance as a function of Higgs boson mass to measured significance
- $\sim 2\sigma$ excess for m_H < 150 GeV, smaller than that observed with 1 fb⁻¹
- p-value is consistent with background only hypothesis within 2σ

The H→WW→Ivqq Analysis

The H→WW→Ivqq Analysis

- At larger Higgs mass, it becomes possible to separate the H→WW→Ivqq decay from the large backgrounds
- Analysis performed for 240 GeV < m_H < 600 GeV
 - Greatest sensitivity for m_H = 500 GeV
- Select events containing one lepton, large E_Tmiss and jets
 - Exactly one lepton (e, μ) with p_T > 30 GeV
 - E_T^{miss} > 30 GeV
 - Either 2 or 3 jets with $p_T > 25$ GeV within $|\eta| < 2.4$
 - Two jets with 71 < M_{jj} < 91 GeV
 - Veto events if any jet is b-tagged
- Reconstruct Higgs mass (M_{lvqq}) by imposing $M_{lv}=M_W$ and $M_{qq}=M_W$
 - \bullet Search for bump in the $M_{l\nu qq}$ distribution above the strongly falling background

Selection and Mass Distributions

	H(evqq) + 0j	$H(\mu\nu qq) + 0j$	H(evqq) + 1j	$H(\mu\nu qq) + 1j$	H + 0j or 1j
W/Z+jets	10780 ± 290	13380 ± 870	6510 ± 250	7410 ± 670	38080 ± 1170
Multi-jet	890 ± 24	256 ± 17	669 ± 25	212 ± 19	2027 ± 43
Top	170 ± 34	164 ± 33	489 ± 98	500 ± 100	1330 ± 270
Dibosons	397 ± 79	414 ± 83	161 ± 32	204 ± 41	1180 ± 240
Total Background	12240 ± 300	14210 ± 870	7830 ± 270	8330 ± 680	42600 ± 1200
Observed	11988	13906	7543	8250	41687
Signal (400 GeV)	14 ± 3.6	12 ± 3.1	18 ± 4.7	14 ± 3.6	58 ± 15

Dominant backgrounds are W/Z+jets

The H→WW→Ivqq Exclusion Limit

- Signal extracted using a maximum likelihood fit to the background modelled by the sum of two exponentials
- For 350 < m_H < 420 GeV, the 95% CL is \sim 2.7 x SM cross-section
- Expected limit in this range is ~4 x SM cross-section

Conclusions

- Presented latest results from ATLAS in the H→WW→IvIv and H→WW→Ivqq channels
 - No evidence (yet) for the Higgs boson
 - H→WW→IvIv analysis excludes the SM Higgs for 154 < m_H < 186
 GeV at 95% CL
 - cf. expected exclusion range: 135 < m_H < 196 GeV
 - H→WW→Ivqq channel obtains a limit of ~2.7σ_{SM}
- A small deviation of ~2σ between the expected and observed limits is observed in the range 110 < m_H < 150 GeV in the H→WW→IvIv analysis
 - Neighbouring mass points are highly correlated due to the mass resolution
- Stay tuned as we close in on the SM Higgs boson!

Back up

$H \rightarrow WW \rightarrow IVIV$ in 2011

EPS

Lepton-Photon

Systematic Uncertainties

Source of Uncertainty	Treatment in the analysis
Jet Energy Resolution (JER)	~ 14%, see Ref. [69]
Jet Energy Scale (JES)	Takes into account close-by jets effect, jet flavor composition uncertainty
	and event pile-up uncertainty in addition to global JES uncertainty
	Global JES < 10% for $p_{\rm T}$ > 15 GeV and $ \eta $ < 4.5, see Ref. [70]
	Pile-up uncertainty 2-5% for $ \eta < 2.1$ and 3-7% for $2.1 < \eta < 4.5$
	These are summed in quadrature before application.
Electron Selection Efficiency	Separate systematics for electron identification,
	reconstruction and isolation, added in quadrature
	Total uncertainty of 2-5% depending on η and E_T
Electron Energy Scale	Uncertainty smaller than 1%, depending on η and E_T
Electron Energy Resolution	Energy varied within its uncertainty, 0.6% of the energy at most
Muon Selection Efficiency	$0.3-1\%$ as a function of η and $p_{\rm T}$
Muon Momentum Scale	η dependent scale offset in p_T , up to $\sim 0.13\%$
Muon Momentum Resolution	$p_{\rm T}$ and η dependent resolution smearing functions, $\leq 5\%$
b-tagging Efficiency	$p_{\rm T}$ dependent scale factor uncertainties, 5.6-15%, see Ref. [71]
b-tagging Mis-tag Rate	up to 21% as a function of p_T , see Ref. [71]
Missing Transverse Energy	13.2% uncertainty on topological cluster energy
	Electron and muon p_T changes from smearing propagated to MET
	Effect of out-of-time pileup: MET smeared by 5 GeV in 1/3 of MC events
Luminosity	3.7% [25]

Z→TT Rejection

- Reconstruction m_{ττ} by assuming
 - leptons arise from Z→TT decays
 - neutrinos are collinear with the leptons
- Reject the event when
 - the energy fractions of the visible decay products are positive
 - i.e. $x_{\tau 1} > 0$ and $x_{\tau 2} > 0$
 - and the invariant mass is consistent with the Z
 - i.e. $|m_{\tau\tau} M_Z| < 25 \text{ GeV}$
- Only applied in H + 1j, because in H+0j the leptons are more often back-to-back